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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS OF CRACK THEORY PROBLEMS 
FOR THIN PLATES* 

V.B. ZELENTSOV 

Integral equations to which problems of the bending of thin plates with 
slits can be reduced are considered. On the basis of the properties of 
the integral equation kernels, conclusions are drawn concerning the 
classes of existence and uniqueness of their solutions. Asymptotic 
methods based on extraction of their principal part with subsequent exact 
inversion are proposed for the solution of the integral equations. On 
the basis of the solutions obtained, formulas are presented forthe stress 
intensity factors in the slit angles, and their dependence on the qeo- 
metrical parameters of the problem is shown. Other problemsareindicated 
that result in the solution of the integral equations under consideration. 

Asymptotic methods of solving integral problems of elasticity theory 
problems on cracks /l-3/ were considered earlier, as were also integral 
equations /4/ analogoustothose considered below. 

1. Tine integral. equation. Two kinds of problems (A and B) of crack theory for 
Kirchhoff-Love plates are studied. 

Problem A, A Kirchhoff-Love plate in the form of a strip of width 2h(O&y<%) is 
considered which is stiffly clamped along the edges. There is a rectilinear slit (crack) of 
length 2a on the plate axis of symmetry (Y = 4 . The slit (crack) edges are subjected to 
the action of a bending moment M,=cp,(x). It is required to determine the angle of rotation 
of the slit edge gio (2) (Fig.la) . 

Problem B. As in problem A, a plate in the form of a strip with a slit (crack) is con- 
sidered. The slit (crack) is opened under the action of an antisymmetric transverse force 

v, = cpz (x) distributed along the slit edges. Determine the vertical displacement of the 
slit (crack) edges gz* (2) (Fig.lbl . 

The mathematical formulation of the problems under consideration is as follows: find the 
solution of the boundary value problem for the biharmonic equation 

DA% = q (2, y) (i.i) 

@ (2. Y) is the plate deflection, q(x, y) is the distributed load, and D is the cylindrical 
stiffness) with mixed boundary conditions. 

Problem A. 

20 (.?&O) = W”’ (2, 0) = V” (z, h) = 0, 1 z 1 < 00 
M, (~3 h) = ‘~1 (4, 1 x I c a; wy’ (2, h) = 0, a < 1 z 1 < 00 

U.2) 

*Prikl.Matem.Mekhan.,52,1,153-159,1988 
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Fig.1 

Problem B. 

w (z,O) = WY’ (2, 0) = M, (2, h) = 0, 1 2 1 < 00 
(I. 3) 

V” (z, h) = ‘pz (z), 1 z 1 < a; w (2, h) = 0, a < 1 2 1 < 00 

By using a generalized Fourier integral transform, these boundary value problems can be 
reduced to the solution of the integral equation 

A4m j g,(E)kn(~)dE=2n(p,(r), Izl<i 

h =;a, g,(z) = (-I)“(1 - v)(3+v) Dg,O/(2a) 

Here (the integral is understood in the generalized sense) 

k,,,(l)= 3 K,(u)h’“‘du 
-QD 

(1.4) 

(1.5) 

where m = 1 for problem A and m = 2 for problem B. 

2. Properties of the kernel of the integral equation. The function Km(s) of 
the kernel of Eq.cl.4) is continuous along the real axis, is even, meromorphicinthe complex 
plane and has the following asymptotic properties: 

Km=aam-l+O(e-"), IuI+~; K,=A,+O(U'),IUI+O (2.1) 

In the complex plane I( = u + ir the functions K,(u) can be represented in the form of 
infinite products 

where ffb,n~ fiy.,,, are, respectively, the zeros and poles 

Lemma. The representation 

m 

of the function Km(u). 

LW=r(W:--L(t). Lk,(f)=S [~-l-K(~)]co~~rtdt 
0 

is valid. 
The functions L(t)is regular in the strip It I< m, lr1<2. Moreover, for 

it is represented by the absolutely convergent series 

r,(t) = 2 a$+“, 
kl 

a$) = $$ j [IP” - K,(u)] u* du 

0 

(2.2) 

(2.3) 

ItIc 

(2.4) 

To prove the lemma we use the integral (in the generalized Sense) /5/ 

0 

s 
u~n-lcosutdu=--inn(m-_)r.(2m)r~ 

. 
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where r(z) is the Gamma function. 
The function L(z) is regular in the strip 1 t/ < 00, ITI< 2 for the estimate (2..1: 2nd 

/6/. Representation (2.4) is obtained after expanding cos ut in a power series in t. 

3. Inversion of the principal part of the integral equation. Extracting the 
singular part of the kernel of integral Eq.Cl.4) by using (2.3), we obtain 

=-wn(++ii 1 am(E) L(+)d& 
-1 

(3.1) 

Integrating the left and right sides of (3.1) 2m - 1 times with respect to I, we obtain 
the singular equation 

(3.2) 

whose solution can be obtained by reduction to a boundary value problem on the jumpofanalytic 
functions /?-9/. Seeking the solution of (3.2) in the class of functions 
ml)-/, 

gm (5) = G, (z)(i - 
/lo-12/, where G, (2)E c, I--i,ll, we obtain the formula 

g,(4=n i R,(Lz)F,(t)d& Frill 0) = n.(rl- I) (kq”” 
--I 

in which the integral for m = 2 is understood as generalized in the sense of its finite part 
/13, 14/. The conditions 

l P-Q* (f) s _-l (1 -,Pp-“~ 
dt.=O, k=1,2 ,..., (am-i) (3.4) 

should be satisfied here. 

Theorem. If the function Q,,(z)E&[-1. il, a> m-V,, then any solution of integral 
Eq.Cl.4) or (3.1) from the class L,I-&1& p>l is a solution of the integral equation 

g,,,(t) = - (- qrn n 5 I?,,, (h z) ‘-D,,,(t) dt - (3.5) 
-1 

(-i)“k’“’ i R,,,(t,z)dt 5 sm(E)Lm*((E- 4k-)Gi IzICf 
-1 -1 

of the form g,,,(z) - G&)(~-z’)~-‘~~, where f&(z)E C,I--i,il under the conditions (3.4) and (3.2) 
and vice-versa, Here 

eb m = h (z), 
de 

L,‘(f) = (- l)“P-12 $g trk+&l 

k-0 m 

b,(k) = 2k +I, b,ck) - (2k +i)(uC +2)(2k +3) 

In the proof it is necessary to take into account that if g(z)= LPI--i,i], *p> 1, then 
the second component on the right-hand side of (3.1) is continuous with all derivatives of the 
function for zE I--i,il. Further, inverting the operator on the left-hand side of (3.1) by 
means of (3.3), we obtain (3.5). 

4. Large values Of L. We use (3.5). We seek the solution of (1.4) in the form cf a 
series in negative powers of X 

(4.1) 

Substituting (4.1) into (3.5) and equating the expressions obtained for identical powers 
of 2. we obtain a solution to o(k*) accuracy in which 



&‘((z)=-- (- l)“n i R,(t,s)cD,(t)df 
-1 

g:” (2) = - ar’ s’ R,(t, z) dt i (E - t) gf) (t) 6 
--I --I 
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(4.2) 

gp’ (x) = - ‘s R, (t, x) dt i (& - z) [ $ (E - t) gf’ (E) + 
-1 -1 

gp’ (2) = 0, gp’ = - =a T \ R, (hx) dt i (t - E)’ gf’ (8 dk 
--I -* 

1 

dt i [a!‘) (t - E)” a&) (E) + 
-4 

etc. In the important special case when m,(s) = 1, taking into account that d"@/d.P= q,,,(x), 
we obtain to accuracy O(A-'(m+a)) 

m+1 

g,(t) = r-1 (2m) (1 - x*)~-‘/* (1 + x 09’ (X) hepk) + 0 o’--#m+“) 
k-1 

4%) = 
6 (@!,I + (5 + 4z')a;') 

24 
(0) 

Q=o, @'=$, .;*) (19 + 69) 

where &) is given by Eqs.(2.4). 

$L_ 

5. Small values of 1. The zero-th term of the asymptotic form of the solution of the 
integral Eq.Cl.4) can be constructed in the form /15, 16/ 

g,(z)=W-&+ (+)gm-(F) “2 (+) (5.1) 

under the condition that V,,,(z)+0 for x< 1. The functions g,*(z) satisfy the Wiener-Hopf 
integral equations and the function "&) satisfies the convolution equation 

T g,*(&)k,(E--)dE=n9m(htf 11, 06x<- 
0 

5 ",(E)hm(E--)~=Jvm(W* lzl<w 
-0 

(5.2) 

(5.3) 

The function k,(Z) is given by (1.5). 
We find the solution of integral Eqs.(5.2) and (5.3) for a special right-hand side 

(Pm (Lz -1) = C'S% by using a generalized Fourier transform /5, 6/. To obtain a simpler form of 
the solution we approximate the function K,(o)of the kernel of the integral equation by an 
expression of two kinds 

(5.4) 

that agreewith Kn(s).inthe asymptotic properties (2.1). The constants A,, a$', a$', y$? are 
found from thebestapproxlmationof K,(u)by these expressions on the real axis. To approxi- 
mate K,(u) (1.5) with a 3% error along the real axis it is sufficient to take N-0 in 
this case. 

In the important special case when w(z)= i (n = 0) the solution of (5.2) has the form 
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(N == 0) 

-m71 

gm* (1) -- I/K; (0) I: x (a$, a:+““), ap, 1) 
k --1 

2 (U, u. u’, f) -7 

f/1, 

(u -- 0) w 
e-'"'erf d(A - u)l 

.(h.Ll) 

for the approximation of the second form of (5.4) and 

(5.6) 

for the approximation of the second form of (5.4). In particular, for m = 1 and N- 0 we 
obtain the simplest form of the solution 

g,* (t) = ZA,n-' arcsin 1/1 - exp (--rrtA,-‘) 

The solution of (5.5) is obtained easily by using a generalized Fourier transform 

v (t) = K_'(O) (5.7) 

Therefore, (5.11, (5.5), (5.6) and (5.7) yield a solution of integral Eq.Cl.4) for small 
A. 

In combination the solutions for small and large )i yield the solution of (1.4) in the 
whole range h C! (0, 00). The nature of the solution obtained on approaching the edge is 

g,(z) = C (l--z*)m-‘r as 1 5 1 + 1, C = const t5. 8) 

6. Numerical analysis of the solutions obtained. An analysis performed on a 
computer shows that the solutions obtained for the integral equation for small and large 7, 
are identical for 1~[1,2), as would be expected from theoretical considerations. The first 
form oftheapproximation (5.4) was used in analysing the solution. For m=i the solution 
for small 1 has the following values of the parameters: A,= 2.4236..,(*)= 1.44&i while (I"-‘ 
-0.5521. (I~ = 0.1911 for solutions for large A. In the case m=2 the parameters are the follow- 
ing: A, = 4.5, I+ = 1.9927. u,") =- 2.020 for small A. and n, = -10.012, LI, 7 26.1971. For the junction, 
the error of the solutions does not exceed the error of the approximation, i.e., 3%. 

7. Stress intensity factor (SIF). The solutions obtained enable us to present 
asymptotic formulas for the SIF. The SIF for problems A, B under consideration K = K, - iK, 
in the terminology of /lo/ is calculated by means of the following formulas (6 is for large b 
and p for small A): 

K,,,e = p,,,g,,,b (A) am+*, K,p = p,,,g,,,fi ( ) + hm'l~, mp,= 6tp,,,l,* 

m+1 
(7.1) 

g,,,b(t)= r-1 (2m)[ I+ kzl ~$'(t)~-~~] , 

gmp (t) = FI x (a$, ajnm+lsk), a~“‘, t) 

in which cprO is the moment distributed over the crack edge, 
force, ho is the plate thickness, d'(2) is from (4.3) 

e" is the distributed transverse 
and X(n, U, W, t) from (5.5). The 

asymptotic formulas (7.1) are identical for large and small 1 when h E Ii.21 with up to 5% 
error. Note that the coefficient K,"is proportional to am-l/a and K,,,p is proportional to 
@-'I*. 

8. Other problems about slits resulting in the integral Eq.(1.4). We will 
mention two problems of the type B of practical importance, whose solution reduces to solving 
the integral Eq.Cl.41. 

Problem B'. A plate of the same planform with a slit of length 2a located on the axis 
of symmetry (v = h) is considered. The slit opening is obtained by displacing the side face 
;J z;)plane (II = 2h,z< 00) along the Oz axis by an amount 28 relative to the side face 

. The side faces of the plate are here clamped stiffly. Determine the displacement of 
the slit edge H - g,'(x), x < a. 

Problem B". The problem of the opening of a slit of length 2aon the axis of symmetry 
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(nr = 4 of a plate inthe form of a strip (0 Q g < 2h, 1 z I< a) is considered. The plate 

side faces (II = 0, g = a) are clamped and rotated through an angle p. Determine the dis- 

placement g*"(z) of the slit edge. 
By using the generalized Fourier transform /13/ or the method ofsuperpositionofsolutions 

of the homogeneous and inhomogeneous problems /3/, the problems can be reducedtothe solution 
of integral Eq.cl.4). The solutions of the problems are here expressed in terms of the 
solutions g,,,(z) obtained for the integral equations (1.4) by the formulas gz'(r)=yHKz(O)A-'x 

gz (2) (problem B') g2" (z) = yfSKz(0)h-‘g, (2) (problem B"), where y = 2(1 - v)73 +v)-‘Dml. 
Note that the coefficients of problems B', B" are proportional to the following 

geometrical parameters K,'b - a'l*h-SH, Kz'fi - h%H, &*b N a%!-', K2"fi N h-‘/s. 

The author is grateful to V.M. Akeksandrov for his interest. 
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